
Atomic and Molecular Mass

Isotopes

- Nuclei that have the same number of protons but a different number of neutrons
- Have identical chemical properties (all have same number of protons and thus electrons) but different physical properties
- The existence of isotopes is evidence for the existence of neutrons inside the nucleus

Examples

 ${}^{1}_{1}\text{H}, {}^{2}_{1}\text{H}, {}^{3}_{1}\text{H}$ (hydrogen) ${}^{238}_{92}\text{U}, {}^{235}_{92}\text{U}$ (uranium)

Sometimes we drop the atomic number ²⁴Mg, ²⁵Mg, ²⁶Mg (magnesium)

We can also represent the isotope like this:

Sodium-23, Sodium-24 (sodium)

Carbon-12, Carbon-14 (carbon)

Relative Atomic Mass (A_r)

- Atoms are small and therefore measuring mass in kilograms or grams would give extremely small numbers.
- Instead the mass of an atom is compared with that of an atom of carbon-12.
- The relative atomic mass of carbon-12 is taken to be 12.

Average Atomic Mass

- If the relative atomic mass is based on carbon, why doesn't carbon have a mass of exactly 12?
 - Carbon has more than one isotope
 - The mass quoted on the periodic table is really the average atomic mass of all atoms of carbon
 - The amount of each isotope of an element is known as the percent abundance

Calculating Average Atomic Mass

• The average atomic mass is the weighted average of all of the isotopes of the element

(mass of isotope1)(percent abundance of isotope1) +
(mass of isotope2)(percent abundance of isotope2) +
(mass of isotope3)(percent abundance of isotope3) + ...
= average atomic mass

Example		
Potass Isotope	Percent Abundance	Atomic Mass (u)
K-39	93.2581	38.963707
K-40	0.0117	39.963998
K-41	6.7302	40.961826
(38.963707)(0.932581) (39.963998)(0.000117) +(40.961826)(0.067302)		
39.098301 u		